Files
gemma3-finetuning/config.py
2025-09-03 00:20:29 +08:00

59 lines
1.6 KiB
Python

"""
配置文件,集中管理模型训练参数和配置
"""
# 模型配置
MODEL_CONFIGS = {
"gemma-3-270m-it": {
"model_name": "unsloth/gemma-3-270m-it",
"uri": r"C:\Users\123ee\.cache\modelscope\hub\models\unsloth\gemma-3-270m-it",
"chat_template": "gemma-3",
"target_modules": ["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"]
},
"gemma-3-270m": {
"model_name": "unsloth/gemma-3-270m-it",
"uri": r"C:\Users\123ee\.cache\modelscope\hub\models\unsloth\gemma-3-270m",
"chat_template": "gemma-3",
"target_modules": ["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"]
},
"qwen3-600m": {
"model_name": "Qwen/Qwen3-600m",
"uri": r"C:\Users\123ee\.cache\modelscope\hub\models\Qwen\Qwen3-600m",
"chat_template": "qwen3",
"target_modules": ["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"]
}
}
# 训练配置
TRAINING_CONFIG = {
"per_device_train_batch_size": 2,
"gradient_accumulation_steps": 4,
"warmup_steps": 5,
"max_steps": 300,
"learning_rate": 2e-4,
"logging_steps": 10,
"optim": "adamw_8bit",
"lr_scheduler_type": "linear",
"seed": 3407,
"weight_decay": 0.01,
"report_to": "none"
}
# LoRA配置
LORA_CONFIG = {
"r": 128,
"lora_alpha": 128,
"lora_dropout": 0,
"bias": "none",
"random_state": 3407,
"use_rslor": False,
"loftq_config": None
}
# 生成配置
GENERATION_CONFIG = {
"max_new_tokens": 1024*16,
"temperature": 1.0,
"top_p": 0.95,
"top_k": 3
}